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Decomposition of Drift Vector Field: An application
to Multi-machine Transient Stability Enhancement

S. Kulkarni∗, M. Parimi, S. Wagh and N. Singh

Abstract—Knowledge of a potential function is of prime
importance in stability analysis of systems. In mechanical sys-
tems, energy is considered as potential function. Passivity based
methods in literature aim in finding potential function, which
may prove unsuccessful for certain class of systems e.g. biological
systems. Unfortunately, no general rules exist for the construction
of a Lyapunov function, so expertise and intuition of the designer
on the specific system is required to define a candidate function.
Present paper proposes a systematic method to generate a poten-
tial function after decomposing a drift vector field representing a
general dynamical system. The method finds application in lossy
multi-machine systems for deriving a control law using gradient
formulation without solving partial differential equations. The
results validated on examples in the area of power system are
used in transient stability analysis and enhancement.

Index Terms—Absolute stability, Gradient formulation, Hodge
decomposition, Lur’e Lyapunov function, Transfer conductances

I. INTRODUCTION

The theory of stability of linear systems is well known in
the literature through Nyquist criterion, root locus technique,
Routh-Hurwitz criterion, which provide necessary and suffi-
cient conditions for stability. However, for nonlinear systems
only sufficiency conditions exist in literature for stability
analysis.

A brief overview of various stability criteria developed
for nonlinear systems is as follows. Popov criterion gives
frequency domain sufficient condition for absolute stability in
the form of strict positive realness of a certain transfer function
of a system with memoryless, time-invariant nonlinearity lying
in first and third quadrant. However, if the nonlinearity is
time-varying Popov criterion is not applicable. Hence circle
criterion came into existence. Kalman and Yakubwitch es-
tablished a connection between Popov’s frequency domain
criterion and the form of Lyapunov function of Lur’e. It was
proved that satisfaction of Popov’s criterion is a necessary
and sufficient condition for existence of Lyapunov function.
Kalman showed in [1] that Popov’s results correspond to the
solvability of original Lur’e equations. Yakubwitch developed
frequency domain matrix inequalities representing equivalent
algebraic conditions [2]. Popov and Yakubwitch provided
further extensions in case of multiple nonlinearities, commonly
termed as KYP lemma which is available in different forms.
Important feature of KYP lemma is that, it relates the internal
(state) stability of a nonlinear system to input-output properties
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of its subsystems. A linear subsystem satisfies KYP lemma
if and only if it is passive or positive system. When the
input-output relation is a constant matrix, testing its positive
definiteness is possible by simply calculating the eigenvalues
and checking whether they are all positive. It is extremely
tedious to prove positive realness of a transfer function in case
of complex systems such as a power system. Zames in [3], [4]
formulated the use of loop transforms to produce operators
that satisfy loop gain or passivity condition equivalent to
Popov’s theory. Use of RL or RC multipliers was introduced
to strengthen small gain theorem which directly relates to
Popov criterion. Multiplier methods were later generalized
for systems with memoryless nonlinearities having sector and
slope restrictions. After the work of Popov, a framework
incorporating passivity and small gain theorem referred to
as dissipative theory was developed by Williems in [5], [6],
according to which, combining subsystems that absorb (or
dissipate) more energy than they produce (or supply) results
in stable (or unstable) system.

Basic concepts of stability emerged from study of equilib-
rium state of a mechanical system. A close relation between
stability and notions of energy, pioneered by A M Lyapunov
is elaborated in [7]. The key idea was that if every motion of
a system has the property that its energy decreases with time,
the system must come to rest irrespective of its initial state. To
make the argument more rigorous, Lyapunov insisted that the
energy measure V (x(t)) of a motion x(t) should be proper,
i.e : V (0) = 0, V (x) > 0, ∀ x 6= 0. The requirement that the
V should be decreasing along all trajectories of the system

ẋ = f(x) (1)

takes the form V̇ (x) = ∂V (x)
∂x f(x) < 0, ∀x 6= 0, where

∂V (x)
∂x is the gradient of V along x. If the inner product of

this gradient and a tangent vector ẋ is constantly negative
then surface of V (x) is monotonically decreasing to zero.
Together, these conditions are well known conditions for
Lyapunov stability, and a function V (x) that satisfies the two
inequalities is called the Lyapunov function for the system.
Unfortunately, no general rules exist for the construction of a
Lyapunov function, so expertise and intuition of the designer
on the specific system is practically required to define a
candidate function. However, methods addressed in [8] such
as first integrals, method of quadratic forms, solutions of
Partial Differential Equations (PDE) etc to some extent help
in constructing a Lyapunov function.

In view of this, present paper proposes a systematic method
to construct an appropriate storage function- a Lur’e-Lyapunov
function for a general dynamical system. Major contributions
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of this method are:
i) Systematic decomposition of a general dynamical system
(a drift vector field) into its natural constituents and applying
it to the pervasive problem of transient stability of lossy n-
machine systems.
ii) Computation of structure matrix by solving Linear Matrix
Inequalities (LMIs).
iii) Gradient formulation of the exact part of vector field to
generate a potential function rather than assuming it and taking
care of non-exact part by adding dissipation to the system.
iv) Formulation of generalized control law without solving
PDEs.

Organization of the paper is as follows. An overview of
different stability criteria and stability in the sense of Lyapunov
is discussed in Section I. The decomposition of a drift vector
field into its natural components and their significance is de-
scribed in Section II. After defining a Lur’e problem, Section
III gives a systematic method to generate a potential function
and a control law for a general nonlinear dynamical system.
Power system dynamics being amenable to Lur’e formulation,
the proposed method is validated on lossy 2-machine system,
in Section IV followed by a generalization of the proposed
method for an n-machine lossy power system described in
Section V. Finally conclusions and future scope of the method
is discussed in Section VI.

II. DECOMPOSITION OF A VECTOR FIELD

Consider a general nonlinear dynamical system:

ẋ = f(x) + g(x)u (2)

where f(x) and g(x) are smooth vector fields on X ∈ Rn

which is the operating region of the system. If u ≡ 0 is
an admissible control resulting in trajectories generated by
vector field f . Hence f is called as drift vector field and
g is called as control vector field. There exists an energy
storage function H : X → R+ which may be zero outside of
X . Moreover, f(x) has a natural decomposition, commonly
referred to as Hodge decomposition addressed in [9], with
respect to storage function H which is pictorially shown in
Fig.1. Mathematically, the drift vector field is represented as:

f(x) = fd(x)︸ ︷︷ ︸
Gradient

+ fI(x)︸ ︷︷ ︸
Harmonic

+ fnd(x)︸ ︷︷ ︸
Curl

such that
(3)

1) LfdH(x) ≤ 0
2) Lfnd

H(x) is either sign indefinite or non-negative in x
3) LfIH(x) = 0

where L denotes Lie derivative and the vector fields
fd(x)(dissipative or exact), fnd(x) (non-dissipative or anti-
exact), fI(x) (invariant) are natural components of f(x) with
respect to H(x) [10]. Rewriting (2) as,

ẋ =
∂H
∂x

(fd(x) + fI(x) + fnd(x)) + g(x)u (4)

Harmonic portion of the vector field contributes in forming the
Hamiltonian which is conservative in nature, gradient portion
decides stability of the system, for example, if this compo-
nent is negative definite then the gradient flow is inwards.
fd(x) + fI(x) constitutes the Lur’e part of the vector field.

Fig. 1. Natural components of vector field

However, no particular strategy is followed by curl, hence it
may be treated as perturbation. There are only two options to
overcome the problem of sign-indefinite constituent, either it
is absorbed in the skew-symmetric part or it is suppressed by
adding dissipation to the system as explained in Section III.

III. FORMULATION OF POTENTIAL FUNCTION AND
CONTROL LAW

A traditional control technique described in [11] normally
used to deal with the problem of absolute stability for a certain
class of nonlinear systems was proposed by Lur’e, wherein
a Nonlinear Isolation Method, is applied to decompose a
system into a linear system with a nonlinear memoryless
feedback f(σ) as shown in Fig.2. Forward path of the system
is described as:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t) (5)

and feedback subsystem as:

z(t) = σ[t, y(t)], u(t) = −z(t) (6)

Fig. 2. A system with nonlinearity

It is assumed that both forward
and feedback subsystems are
“square” i.e. both have equal
number of inputs and outputs.
Given the matrices A ∈ Rn×n,
B ∈ Rn×m, C,D ∈ Rm×m,
such that pair (A,B) is con-
trollable and pair (C,A) is ob-
servable and numbers α and
β are such that α < β, the
problem is to derive conditions
involving transfer matrix and numbers α, β such that origin is
globally, uniformly, asymptotically stable equilibrium point of
(5) for every function σ : R+ × Rm → Rm belonging to the
sector [α, β].

Absolute stability problem is commonly referred to as Lur’e
problem. Mathematically the Lur’e system is represented as:

ẋ = Ax−Bf(σ), σ = C ′x (7)

where, x ∈ Rn, σ is a control variable and f(σ) is a nonlinear
function such that σf(σ) > 0 when σ > 0. Although, form
of f(σ) in (7) is not specified, it is known to be sector bound
and slope restricted as shown in Fig.3. A quadratic inequality
is used to bound the nonlinear feedback between two linear
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Fig. 3. Different types of nonlinearities

bounds. The sector-bound nonlineariy defined in [12], [13],
[14], representing the feedback subsystem of Lur’e system is
defined as: suppose σ : R+ × Rm → Rm and the constants
α, β ∈ R, with α < β. Then σ is said to belong to the sector
[α, β] if:

i) σ(t, 0) = 0,∀t ∈ R+ and
ii) [σ(t, y)− αy]′[βy − σ(t, y)] ≥ 0,∀t ∈ R+,∀y ∈ Rm.

The Lur’e system is said to be absolutely stable,if it has a
globally uniformly asymptotically stable equilibrium point at
the origin for all nonlinearities in a given sector.
A procedure to generate potential function and to derive a
control law is as follows:

1) Given any general dynamical system of the form (2),
decompose f(x) into its natural components, to get

ẋ = fd(x) + fI(x)︸ ︷︷ ︸
Lur′e

+ fnd(x)︸ ︷︷ ︸
non−Lur′e

+g(x)u (8)

2) The system can be re-written in the generalized gradient
form:

ẋ = −Q∇H+ fnd(x) + g(x)u (9)

where H is the Lur’e Lyapunov function obtained by
augmenting the Lyapunov energy function with integral
of nonlinearity addressed in [15], [16] as:

H = Kinetic energy + Potential energy

= xTPx+

∫ C>x

0

f(σ) (10)

3) Gradient of H is:

∇H = Px+ C>f(σ) (11)

This modifies (9) as:

ẋ = −QPx−QC> f(σ) + fnd(x) + g(x)u (12)

Comparison of (7) and (12) results into

B = QC> and A = −QP (13)

The structure of Q is known from (13). For nth order
system Q is computed by solving LMI:[

−(Q+Q>) (B −QC)
(B −QC)′ −I(n)]

]
6 0 (14)

so that (Q+Q>) > 0.
Once Q is computed P is obtained from (13). Thus no
assumptions are made while forming structure matrix
which is a key contribution of the proposed method.

This feature makes it feasible to use the method for n-
dimensional system.

4) Splitting the structure matrix Q as:

Q = Qskew +Qsym

= (1/2)(Q−Q>) + (1/2)(Q+Q>) (15)

Ḣ is computed as:

Ḣ = −∇H>Qskew∇H−∇H>Qsym∇H (16)

5) Deriving a control law: System is stable if ˙H ≤ 0. In
(16) since the first term is zero, stability of the system
is determined by the second term. Control law u1 is
so chosen that it is possible to absorb the actuated part
fnd1(x) into the skew symmetric part of the structure
matrix. Nonlinearity represented by unactuated part fnd2
may be considered as a perturbation in the system and an
obvious solution to overcome the perturbation is to add
dissipation in the system by modifying the symmetric
part of the structure matrix. The closed loop dynamics
of the system then becomes:

ẋ = −Q̃skew∇H− Q̃sym∇H (17)

where, Q̃skew is modified Qskew matrix after absorbing
fnd1(x) term and Q̃sym is modified Qsym matrix after
adding dissipation. The system is stable if Qsym ≥ 0.
The control law is so designed as to maintain the
skewness of Qskew on absorption of terms in fnd1.
Mathematically it could be expressed as:
Q̃skew(i, j)∇Hj = −Q̃skew(j, i)∇Hi The term ab-
sorbed in the location
Qskew(i, j) = fnd1(x)/(∂H/∂xj)
The control law then becomes:
−Q̃skew(j, i)∇Hi

IV. CASE STUDY EXAMPLE:A LOSSY 2-MACHINE SYSTEM

Consider a lossy 2-machine system represented using flux-
decay model given in [17]:

δ̇12 = ω1 − ω2

ω̇1 = −D1ω1 + P1 −G11E
2
1 − E1E2B12 sin(δ12)

− E1E2G12 cos(δ12)

ω̇2 = −D2ω2 + P2 −G22E
2
2 + E1E2B12 sin(δ12)

− E1E2G12 cos(δ12)

Ė1 = −a1E1 + b1E2 cos(δ12 + α12) + Ef1 + u1

Ė2 = −a2E2 + b2E1 cos(δ12 − α12) + Ef2 + u2. (18)

To decompose f(x) into it’s natural components, it is required
to modify speed dynamics in (18) as:

ω̇1 = −D1ω1 − E1?E2?B12sin(δ12)− E1?E2?G12cos(δ12)

− (E1 − E1?)[E2?(B12sin(δ12) +G12cos(δ12)]

− E1[(E2 − E2?)(B12sin(δ12) +G12cos(δ12)] (19)

ω̇2 = −D2ω2 + E1?E2?B12sin(δ12)− E1?E2?G12cos(δ12)

(E2 − E2?)[E1(B12sin(δ12) +G12cos(δ12)]

+ E2? [(E1 − E1?)(B12sin(δ12)−G12cos(δ12)] (20)
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The equilibrium point for the system is (δ12?, 0, 0, E1?, E2?),
which modifies excitation dynamics in (18) to:

Ė1 = −a1(E1 − E1?)− a1E1? + b1E2cos(δ12 + α12)

+ Ef1 + u1 (21)

Ė2 = −a2(E2 − E2?)− a2E2? + b2E1cos(δ12 − α12)

+ Ef1 + u2 (22)

Applying the necessary condition for the existence of an
equilibrium as mentioned in [18] it is observed that
P1+P2 = E2

1G11+E
2
2G22. For the system (18) the potential

function H becomes:

H =
1

2
(ω2

1 + ω2
2) +

1

2
γ1(E1 − E1?)

2

+
1

2
γ2(E2 − E2?)

2 + E1?E2?B12cos(δ12) (23)

The gradient of which is:

[−E1?E2?G12sin(δ12) ω1 ω2 γ1(E1 − E1?) γ2(E2 − E2?)]
′

(24)
Decomposing system (18) into natural components as:

˙δ12
ω̇1

ω̇2

Ė1

Ė2

 = {−


0 −1 1 0 0
1 −D1 0 0 0
−1 0 −D2 0 0
0 0 0 −a1/r1 0
0 0 0 0 −a2/r2


︸ ︷︷ ︸

fd+fI

+


0 0 0 0 0
0 0 0 ?1 ?2
0 0 0 ?3 ?4
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

fnd1

}∇H+


0

fnd21

fnd22

0
0


︸ ︷︷ ︸

fnd2

(25)

where,fnd21 = −E1?E2?G12cos(δ12) = fnd22 and

?1 = fnd11(2, 4) = −
E2?(B12sin(δ12) +G12cos(δ12))

γ1

?2 = fnd12(2, 5) = −
(E1(B12sin(δ12) +G12cos(δ12))

γ2

?3 = fnd13(3, 4) =
(E2?(B12sin(δ12)−G12cos(δ12))

γ1

?4 = fnd14(3, 5) = −
E1(B12sin(δ12) +G12cos(δ12))

γ2
(26)

First term on RHS of (25) is the structure matrix Q which
is split into Qsym i.e. dissipative component, and Qskew i.e.
invariant component. Actuated part fnd1 i.e portion of sign
indefinite component represented in terms of ∇H could be
absorbed in Qskew. However, it is not possible to absorb
a portion of sign-indefinite component viz. fnd2 which is
due to non-trivial transfer conductances. The only solution
to overcome this problem is to suppress its effect by adding
dissipation in the system, through the tuning parameters γ1
and γ2, by deriving a suitable control law. For the system (18)
the control laws are:

u1 = a1E1? − b1E2cos(δ12 + α12)− Ef1
− fnd11ω1 − fnd12ω2 − r1γ1(E1 − E1?) (27)

u2 = a2E2? − b2E1cos(δ12 − α12)− Ef2
− fnd13ω1 − fnd14ω2 − r2γ2(E2 − E2?) (28)

The proposed method of decomposition of f(x) into natural
constituents may be generalized to an n-machine system.

V. GENERALIZATION FOR LOSSY n-MACHINE SYSTEM

Consider an n-machine system represented by flux decay
model:

δ̇ij = ωi − ωj for i = 1 to n

ω̇i = −Diωi + Pi −GiiE2
i −

j=n∑
j=1,j 6=i

[EiEjBij sin(δij)

− EiEjGij cos(δij)]

Ėi = −aiEi +
j=n∑

j=1,jneqi

biEj cos(δij + α1j) + Efi + ui

(29)

where δij = −δji and αij = tan−1
Gij

Bij
Also for j > i,

δij = δ1j − δ1i A necessary condition for the existence of
an equilibrium as mentioned in [18] is :

n∑
i=1

Pi =
n∑
i=1

GiiE
2
i (30)

The state vector x for n-machine system is:

[δ12 δ13 · · · δ1n ω1 ω2 · · · ωn E1 E2 · · · En]′ (31)

Modifying frequency dynamics of (29),

ω̇i = −Diωi +

j=n∑
j=1,j 6=i

Ei?Ej?Bij sin(δij)

− (Ei − Ei?)[
j=n∑

j=1,j 6=i

Ej?(Bijsin(δij) +Gijcos(δij)]

− Ei[
j=n∑

j=1,j 6=i

(Ej − Ej?)(Bijsin(δij) +Gijcos(δij))]

−
j=n∑

j=1,j 6=i

Ei?Ej?Gijcos(δij) (32)

The equilibrium point for the system is

(δ12?, δ13?, .., δ1n?, 0, 0, .., 0 E1?, E2?, .., En?) (33)

Modifying excitation dynamics in (29) as:

Ėi = −ai(Ei − Ei?)− aiEi? +
i=n∑

i=1,i6=j

biEjcos(δij + αij)

+ Efi + ui (34)

Applying the procedure described in Section III, the potential
function is:

H =
1

2

i=n∑
i=1,i6=j

ω2
i +

1

2

i=n∑
i=1,i6=j

γi(Ei − Ei?)2

−
j=n∑
j=2

E1?Ej?B1jsin(δ1j) (35)
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The Hodge decomposition of f(x) in matrix form becomes:

˙δ12
...
˙δ1n
ω̇1

...
ω̇n

Ė1

...
Ėn



= {−



[0]︸︷︷︸
(n−1,n−1)

[ [−1]︸︷︷︸
(n−1,1)

[I]︸︷︷︸
(n−1,n−1)

] [0]︸︷︷︸
(n−1,n)

[1]︸︷︷︸
(1,n−1)

− [I]︸︷︷︸
(n,n−1)

 [Diag(Di]︸ ︷︷ ︸
(n,n)

[0]︸︷︷︸
(n,n)

[0]︸︷︷︸
(n,n−1)

[0]︸︷︷︸
(n,n)

[Diag(
ai

ri
)]︸ ︷︷ ︸

(n,n)


︸ ︷︷ ︸

Q=fd+fI

+



[0]︸︷︷︸
(2n−1,n)

[0]︸︷︷︸
(n,n)

[0]︸︷︷︸
(2n−1,n−1)

[fnd1]︸ ︷︷ ︸
(n,n)

[0]︸︷︷︸
(2n−1,n)

[0]︸︷︷︸
(n,n)


︸ ︷︷ ︸

fnd1

}∇H+



[0]︸︷︷︸
(n−1,1)

[fnd2](n,1)︸ ︷︷ ︸
[0]︸︷︷︸

(n,1)


︸ ︷︷ ︸

fnd2

(36)

The diagonal elements if matrix [fnd1] are:

−(Ei − Ei?)[
j=n∑

j=1,j 6=i

Ej?(Bijsin(δij) +Gijcos(δij)] (37)

and off-diagonal elements are:
−Ei[

∑j=n
j=1,j 6=i(Ej − Ej?)(Bijsin(δij) + Gijcos(δij))] ex-

tracted from (32). Similarly, [fnd2] is comprised of terms in
(32):
−
∑i=n
i=1,i6=j Ei?Ej?Gijcos(δij). As mentioned earlier in (16),

stability is ensured if Ḣ ≤ 0. The nonlinearities fnd1 in
the equations representing speed dynamics are absorbed in
Qskew of dimension (3n − 1, 3n − 1), for an n-machine
system. The entries of fnd1 has a dimension of (ii, kk) where
ii = (n to 2n − 1) and kk = (2n to 3n − 1). However,
this disturbs the skewness of Qskew. In order to maintain
skewness (kk, ii) elements of the matrix are filled by identical
entries with opposite signs which modifies Qskew to Q̃skew.
since ∇H>Qskew∇H = 0, to assure stability of the system
∇H>Qsym∇H ≤ 0. This is possible only by adding dissipa-
tion in the system through symmetric part of interconnection
matrix. The control laws appearing in the excitation dynamics
are:

ui = aiEi−
i=n∑

i=1,i6=j

biEj cos(δij + α1j)− Efi −
i=n∑
i=1

fnd1iωi

− riγi(Ei − Ei?) (38)

where ri is a tuning parameter to be adjusted so as to make
Ḣ = 0. In the control approach explained, it is to be noted
that the effect of unactuated factor may increase with the
size of the system. Such a case could be stabilized with
the help of a global controller such as Thyristor Controlled
Series Compensator (TCSC) using edge weight control method
proposed in [19].

VI. CONCLUSIONS AND FUTURE SCOPE

The drift vector field decomposition method gives a generic
perspective to analyze a wide range of applications of nonlin-
ear dynamical systems. The approach highlights the manipula-
tions in interconnection matrix to derive a suitable control law.

However, the method may be explored to the class of systems
wherein different potential function could be formulated to
assure stability. The method has efficiently addressed the long-
lasting problem of finding a control law for lossy n-machine
systems.
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